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Abstract Tuta absoluta is an invasive destructive pest that

is currently posing a major threat for tomato production

worldwide. Insecticides are a key component of typical

pest management schemes. Resistance to diamides, the

most recently introduced class of insecticides, was recently

reported in Italy. Monitoring of insecticide efficacy is the

basic tool for proactive evidence-based resistance man-

agement. Here, we report the findings of a 4-year survey

performed at the Euro-Asian region. A total of 35 popu-

lations were collected between 2012 and 2016 from

Greece, Italy, Spain, Israel and UK. The response of these

populations was evaluated through laboratory bioassays

with the main insecticides used for T. absoluta control:

chlorantraniliprole, indoxacarb, emamectin benzoate and

spinosad. Analysis of the results indicated six cases of

low/moderate resistance to the emamectin benzoate (re-

sistance ratio (RR)[ 15-fold), a single case of resistance

to spinosad (RR: 33-fold) and five cases of resistance to

indoxacarb (RR: 13- to 91-fold). Likelihood of control

failure was detected for indoxacarb, but reports of poor

field performance were absent. Resistance to chlo-

rantraniliprole, after 2015, was widespread in Italy and

Greece with high RR ([64-fold) and significant likelihood

of control failure in most cases. Chlorantraniliprole resis-

tance was also detected in Israel (RR: 22,573-fold) but not

in Spain and UK (RR\ twofold). The absence of diamide

resistance in tomato leaf miner populations in Spain is most

likely linked to a recently established integrated pest

management program including non-chemical measures

and the rotational use of insecticides of different mode of

action classes.
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Key message

• Tuta absoluta is a global tomato pest mainly control by

insecticides.

• It is capable of developing insecticide resistance

resulting in major crop losses.

• The evolution of resistance is dynamic and requires

continues monitoring thus to successfully implement

proactive resistance management.

• Within that frame, our work identified the first indica-

tions of resistance development to indoxacarb, spinosad

and emamectin benzoate in the European/Asian region.

• Diamide resistance is expanding with the exception of

Spain, a contrasting situation highlighting the benefits

of IPM.
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Introduction

The tomato leaf miner, Tuta absoluta (Meyrick) (Lepi-

doptera: Gelechiidae), is a major agricultural pest of

tomato crops. The leaf miner was initially restricted to

South America; however, in 2006, the pest invaded Europe

most probably with a single introduction event from Cen-

tral Chile (Urbaneja et al. 2007; Guillemaud et al. 2015)

and rapidly became a global pest threatening tomato pro-

duction in both greenhouse and field crops (Desneux et al.

2010, 2011; Tonnang et al. 2015; Campos et al. 2017). Tuta

absoluta pest management relies largely on diverse

strategies, involving both preventive and corrective control

measures. Preventive measures include strict phytosanitary

inspections of propagation material, use of infrastructures

providing mechanical protection and close monitoring of

the pest status with crop surveys and/or pheromone traps

(Benvenga et al. 2007; Roditakis et al. 2010; Abbes et al.

2012; Guedes and Picanço 2012; Alili et al. 2014; Biondi

et al. 2015; Ceparano et al. 2015). Corrective tomato leaf

miner control measures include adult trapping, mating

disruption and use of beneficial insects (predators and

parasitoids), microbial and fungal pathogens, mineral oils

as well as plant extracts (Michereff Filho et al. 2000;

Brunherotto and Vendramim 2001; Urbaneja et al. 2009;

Pires et al. 2010; González-Cabrera et al. 2011; Moreno

et al. 2012; Biondi et al. 2013; Caparros Megido et al.

2013; Chailleux et al. 2013; Cocco et al. 2013; Zappalà

et al. 2013; Abd El-Ghany et al. 2016; Aksoy and Kovanci

2016). Finally, one of the major components of any pest

management scheme is the application of chemical insec-

ticides which are extremely potent in controlling the pest

when used in a timely manner (Siqueira et al. 2000b; Silva

et al. 2011; Guedes and Picanço 2012; Roditakis et al.

2013a).

In Europe, a number of chemicals have been registered

for T. absoluta control; however, the most extensively used

insecticides belong to four distinct chemical classes

addressing different modes of action, namely the diamides,

the avermectins, the spinosyns and the oxadiazines (Sparks

and Nauen 2015). Diamide insecticides belong to mode of

action (MoA) Group 28 according to the Insecticide

Resistance Action Committee (IRAC) MoA classification

(IRAC 2016) and are activators of insect ryanodine

receptors (RyR) located in the sarco- and endoplasmic

reticulum in neuromuscular tissues (Lahm et al. 2005;

Cordova et al. 2006; Ebbinghaus-Kintscher et al. 2007).

Diamides interfere with release of Ca2? from the internal

stores of smooth and striated muscles, thus disturbing

normal muscle function (Cordova et al. 2007; Lümmen

2013). Chlorantraniliprole is currently the only diamide

insecticide registered for the control of T. absoluta in

Europe, while in Israel two diamide insecticides are cur-

rently registered (chlorantraniliprole and cyantraniliprole).

Avermectins are activators of the glutamate-gated chloride

channels (GluCls) and cause neuronal and muscular system

malfunctions (IRAC MoA Group 6) (Lasota and Dybas

1991; Fisher and Mrozik 1992; IRAC 2016). Registered

chemicals from this group are the insecticides abamectin

and the emamectin benzoate. Spinosyns (IRAC MoA

Group 5) are nicotinic acetylcholine receptor (nAChR)

allosteric activators. These insecticides cause a change in

receptor conformation, leading to the opening of ion

channels that is causing excitation of neurons in the central

nervous system (Salgado 1998; Thompson et al. 2000).

Spinosad is the only registered insecticide for tomato leaf

miner control from this group. Oxadiazines (IRAC MoA

Group 22A) are blockers of voltage-dependent sodium

channels and different from pyrethroids and DDT (Silver

et al. 2010; Wing et al. 2010; Jiang et al. 2015). Thus,

oxadiazines form a different mode of action subgroup with

only one representative in the IRAC classification, the

insecticide indoxacarb. Indoxacarb is a pro-insecticide that

requires metabolic activation by the targeted pest prior

exhibiting insecticidal properties (Wing et al. 2010).

Overreliance on insecticides to tackle major pests, such

as the tomato leaf miner, is not uncommon in current

agriculture (Armes et al. 1996; Roditakis et al. 2009;

Wang and Wu 2012). However, insecticide applications

alone cannot be considered as a sustainable pest man-

agement solution (Deguine et al. 2008; Naranjo and

Ellsworth 2009). The selection pressure enforced by the

excessive use of chemicals on pest populations is favoring

the survival of resistant genotypes driving the develop-

ment of resistance and a substantial reduction in efficacy

levels of insecticides (Perry et al. 1997). Insecticide

resistance is one of the major problems in current pest

control and associated with control failures in numerous

cropping systems worldwide (Roditakis et al. 2009; Silva

et al. 2011; Sparks and Nauen 2015). The phenomenon is

gradually expanding, and to date more than 580 arthropod

species have been reported to exhibit some form of

resistance to chemical classes of insecticides, while

resistance reports have been documented for at least 325

insecticides (Sparks and Nauen 2015). Tuta absoluta is no

exception, since several cases of resistance have been

documented to established as well as novel chemicals

(Siqueira et al. 2000a, b, 2001; Lietti et al. 2005; Silva

et al. 2011; Haddi et al. 2012; Gontijo et al. 2013; Campos

et al. 2014b). With regard to the chemical classes evalu-

ated in this study, high resistance levels have been

reported for diamide insecticides in Italy and Brazil

(Roditakis et al. 2015; Silva et al. 2016a). Spinosad

resistance has been documented in Brazil and UK
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(Campos et al. 2014a; AHDB 2015), while no resistance

to avermectins and oxadiazines has been reported to date.

This study is a follow-up of the baseline susceptibility

study on European T. absoluta populations (Roditakis

et al. 2013a, b) that was conducted almost immediately

after the invasion of the leaf miner in Greece and Italy

(Viggiani et al. 2009; Roditakis et al. 2010). However, in

the present study, the regions and the number of popu-

lations tested as well as the time frame of the survey were

expanded, thus providing a more comprehensive overview

than earlier studies on the efficacy levels of key insecti-

cides for T. absoluta management in Europe. Based on

our results, resistance to chlorantraniliprole is expanding

as it was detected in a number of populations from Italy,

Greece and Israel. The classes of oxadiazines, avermectin

and spinosyns require attention since resistance cases

were detected in European populations. Although the

phenomenon is extremely limited, it has to be closely

monitored.

Materials and methods

The populations for this survey were collected during a

5-year sampling period, from 2012 to 2016. In total, 35

distinct sites were sampled from 5 geographical regions of

Europe and Minor Asia. More specifically, fifteen popu-

lations were collected from Greece, ten from Italy, seven

from Spain, two from Israel and one from UK. A detailed

record for each population is provided in Table 1. For each

population, a code name was assigned that will be used for

identification hereafter.

The samples originated from infested greenhouse

tomato crops and in most cases growers had reported

problems in the control of the tomato leaf miner. Sample

collection protocol is fully described in Roditakis et al.

(2015). Briefly, a number of T. absoluta infested tomato

leaves from each site, bearing approx. 400–800 larvae,

were collected in plastic bags. The samples were trans-

ferred to the laboratory within 48 h, and tomato leaves

provided adequate nutrition during transfer. Upon arrival in

the laboratory, larvae/leaves were transferred in insect-

proof rearing cages and were provided with adequate

number of insect-free potted tomato plants to resume

development. Tuta absoluta rearing was conducted at

25 ± 1 �C, 65% RH and photoperiod at 16 h light:8 h

dark. Tomato plants (Solanum lycopersicum L., var.

Valuro) were used for the development of the populations.

The plants were maintained pest-free in large insect-proof

cages under semi-field conditions; no insecticides were

used during the plant development phase (for details, see

Roditakis et al. (2013a)).

Insecticides

Commercial formulations of the following insecticides

were used: the diamide chlorantraniliprole (Altacor�

35WG, DuPont, France), the avermectin emamectin ben-

zoate (Affirm� 095 SG, Syngenta, UK), the spinosyn spi-

nosad (Laser� 480SC, Dow, USA) and the oxadiazine

indoxacarb (Steward� 30WG, DuPont, France).

Bioassays

Approximately 100 moths were collected from the rearing

cages and were allowed to oviposit on insect-free plants for

24–48 h. These plants were incubated separately until the

larvae reached the second instar. Subsequently, the IRAC

method 022 (www.irac-online.org) was adopted, with slight

modifications, for the toxicological assays. The method

protocol is a classical leaf dip assay that is fully described in

Roditakis et al. (2013b). Briefly, tomato leaves, either cut in

square pieces or entire leaflets, were immersed in serial

insecticide concentrations containing Triton X-100

(0.2 g L-1) as a nonionic wetting agent. Treated leaves were

allowed to dry for 1–2 h at room temperature and subse-

quently placed adaxially on moist tissue paper in a multi-

well Repli-dish. A single second instar larva was placed in

each well; subsequently, all wells were sealed with trans-

parent ventilated adhesive lids. Bioassays with Spanish

populations were conducted following a slightly modified

version of the leaf dip protocol which is described in details

in Roditakis et al. (2013b). All bioassays were incubated in

growth chambers at 25 ± 0.5 �C and 65 ± 5% relative

humidity. Mortality was assessed after 3 days of exposure,

after larvae were carefully removed from leaf galleries under

magnifying glass. Larvae were considered dead if they were

unable to move the length of their bodies after gentle

prodding with a camel-hair brush.

Data analysis

Mortality data from dose–response bioassays were sub-

jected to probit analysis based on Finney (1964) using

PriProbit 3.4 (Sakuma 1998) or Polo Plus (LeOra software,

USA). Both types of software test the linearity of dose–

mortality response and provide the slope, the lethal con-

centrations (LC) and the 95% fiducial limits (FL) of the

lethal concentration for each mortality line. Using the

appropriate function, the relative potency ratio among

responses was calculated. Responses were considered sig-

nificantly different when the 95% confidence interval of

relative potency ratio did not include the value 1. Per-

centage mortality values generated in bioassays were cor-

rected using Abbott’s formula (Abbot 1925).
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The likelihood of insecticide control failure is a well-

established index of insecticide efficacy (ffrench-Constant

and Roush 1990; Roditakis et al. 2013a; Guedes 2017)

comparing the estimated % mortality at the label rate to an

80% threshold. The particular threshold was initially set

following the Brazilian legislation (Silva et al. 2011).

Currently two approaches estimating control failure like-

lihood have been used (Silva et al. 2011; Gontijo et al.

2013). Here, the protocol by Silva et al. (2011) was

adopted. Briefly, the mortality achieved by the label rate

would be considered significantly lower than 80% when the

lower 95% fiducial limit of the LC80 was found higher than

Table 1 Information on populations of Tuta absoluta used in the present study

Country Population Location Coordinates Sampling Crop

Reference GR-Lab Greece, Peloponnese Aug-10 *GH T

ES-Sus Spain, Murcia, Aguilas Jan-11 GH T

Greece GR-ARV-12-1 Vianos, Arvi 34�590N, 25�240E May-12 GH T

GR-TYMP-12-2 Tympaki, Sivas 35�00N, 24�480E Jun-12 GH T

GR-TYMP-14-1 Tympaki, Klima 35�50N, 24�450E Mar-14 GH T

GR-IER-14-1 Ierapetra, Kentri 35�20N, 25�440E Apr-14 GH T

GR-IER-14-2 Ierapetra, Sopates 35�10N, 25�380E Mar-14 GH T

GR-IER-14-3 Ierapetra, Mpountoules 35�10N, 25�430E May-14 GH T

GR-IER-15-3 Ierapetra, Vainia 35�00N, 25�460E May-15 GH T

GR-IER-15-2 Ierapetra, Kalogeri 35�10N, 25�390E May-15 GH T

GR-PEL-15-1 Trifilia, Gargalianoi 37�00N, 21�390E Jun-15 GH T

GR-TYMP-16-1 Tympaki, Tympaki 35� 50N, 24�450E Apr-16 GH T

GR-TYMP-16-2 Tympaki, Vori 35� 40N, 24�480E Apr-16 GH T

GR-TYMP-16-3 Tympaki, Lagolio 35� 50N, 24�470E Apr-16 GH T

GR-DRAM-16-4 Drama, Kalos Agros 41� 60N, 24�50E Jun-16 GH T

GR-PREV-16-5 Preveza, Petritsia 38�590N, 20�440E Jun-16 GH T

GR-IER-16-6 Ierapetra, Kalithea 35� 10N, 25�430E Jun-16 GH T

Italy IT-PACH-14-1 Siracusa, Pachino 36�400N, 15�50E May-14 GH T

IT-PACH-14-2 Siracusa, Pachino 36�400N, 15�50E May-14 GH T

IT-GELA-14-1 Caltanissetta, Gela 37�10N, 14�190E May-14 GH T

IT-ACAT-14-1 Ragusa, Acate 36�590N, 14�230E May-14 GH T

IT-RAG-15-1 Ragusa, Punta Braccetto 36�490N, 14�280E May-15 GH T

IT-RAG-15-2 Ragusa, Scicli 36�450N, 14�410E May-15 GH T

IT-MAR-15-1 Ragusa, Marina di Acate 36�590N, 14�230E Jun-15 GH T

IT-MAR-15-2 Ragusa, Marina di Acate 36�590N, 14�230E Jun-15 GH T

IT-FOND-16-1 Latina, Salto Covino 41�180N, 13�200E Aug-16 GH T

IT-FOND-16-2 Latina, Sperlonga 41�160N, 13�240E Aug-16 GH T

Spain ES-MUR-12 Spain, Murcia, Mazarron 37�360N, 1�170W Jul-12 GH T

ES-MUR-14-1 Spain, Murcia, Cañada de Gallego 37�330N, 1�250W May-10 GH T

ES-MUR-14-2 Spain, Murcia, Puntas de Calnegre 37�310N, 1�260W Nov-14 GH T

ES-ALM-14 Spain, Almeria, La Mojonera 36�450N, 2�410W Nov-14 GH T

ES-MUR-15 Spain, Murcia, La Palma 37�410N, 0�570W Aug-15 GH T

ES-ALM-15 Spain, Almeria, La Cañada 36�500N, 2�240W Jul-15 GH T

ES-MUR-16 Spain, Murcia, Totana 37�460N, 1�280W Jul-16 GH T

Israel ISR-15-1 Negev, Kmehin 30�550N, 34�250E Sep-15 GH T

ISR-15-2 mixed locations sample

(Tamra, Ibblin, Tubas)

N/A Nov-15 GH T

UK UK-16-1 North Yorkshire, Stokesley 54�270N, 1�110W Sep-16 GH T

Collections were made from 2012 to 2016. All strains were collected from infested greenhouse tomato crops and were maintained thereafter on

tomato plants under laboratory conditions for 1–2 generations

GH T greenhouse tomato, FD T field tomato
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the recommended rate. The maximum recommended label

rates (RLR) for the tested insecticides for Southern Europe

were: emamectin benzoate, 14.2 mg L-1, chlo-

rantraniliprole 42 mg L-1, spinosad 120 mg L-1, indox-

acarb 37.5 mg L-1.

Results

The probit analysis results are presented in Tables 2, 3, 4

and 5. The responses of the populations to the tested

insecticides were homogenous and fitted the Log-dose

probit-mortality model. The assays for the populations

from Italy, Greece, Israel and UK were conducted in

Heraklion, and responses were compared to the GR-Lab

reference strain, while the populations from Spain were

tested in Cartagena and these responses were compared to

the ES-Sus reference strain.

Diamide insecticide: chlorantraniliprole

The response of 35 populations in total was tested against

the insecticide chlorantraniliprole (Table 2). The tested

populations exhibited a wide range of slope coefficients;

the highest slope was 3.26 observed in a Greek population

collected in 2012 (GR-ARV-12-1), the lowest slopes

([0.9) were observed in Greek populations collected in

2016 at the Tympaki area (GR-TYMP-16-3, GR-TYMP-

16-2, GR-TYMP-16-1). The majority of the populations

(23) exhibited slopes between 1.00 and 2.10, suggesting a

relatively homogenous response to the diamide insecticide

at European level.

Earlier samples from Italy (Roditakis et al. 2013b) and

Greece (Roditakis et al. 2013a) collected between 2010 and

2011 exhibited LC50 values comparable to the current

reference strain and the baseline data published for chlo-

rantraniliprole. The same was observed in 2012 for popu-

lations collected from Greece (Table 2). The first

populations exhibiting resistance to diamides were col-

lected in 2014 from Italy, representing the first cases of

resistance at a global level (Roditakis et al. 2015). At the

same period, the LC50 of Greek populations ranged

between 0.38 and 2.45 mg L-1 indicating rather low

resistance ratio (RR, calculated based on GR-Lab strain,

LC50 0.31 mg L-1) up to eightfold. This small but statis-

tically significant divergence from the baseline data was

reported in Roditakis et al. (2015) as an alarming indication

of incipient resistance development. Thereafter, in

2015–2016 sampling period, high resistance levels to

chlorantraniliprole were detected in Italy, up to 2704-fold

(LC50: 838 mg L-1, IT-MAR-15-2), Greece up to

3200-fold (LC50: [1000 mg L-1, GR-DRAM-16-4) and

Israel up to 22,570-fold (LC50: 6998 mg L-1, ISR-15-2). In

general, the LC50 values to chlorantraniliprole were high

([16 mg L-1/RR[ 54-fold) with just 2 exceptions (IT-

RAG-15-1 and ISR-15-1) suggesting moderate to high

levels of resistance for the populations collected in

2016–2015 from Italy, Greece and Israel. Taking into

account that the particular samples were mostly collected

from fields with reported control failures, it is suggested

that the problematic pest control could be associated with

resistance to diamides.

For the Spanish populations, the earliest sample was

collected in 2012 (Table 2). The LC50 values ranged

between 0.12 mg L-1 (ES-MUR-16) and 1.45 mg L-1

(ES-MUR-14-2). The resistance ratio (RR, calculated

based on ES-Sus strain, LC50 0.20 mg L-1) was below

twofold in general with one exception (eightfold) sug-

gesting absence of diamide resistance. For the UK popu-

lation (UK-16-1) collected in 2016, no resistance was

detected since the estimated LC50 (0.17 mg L-1) was

comparable to the LC50 of the reference strain.

Oxadiazine insecticide: indoxacarb

The response of 30 populations was evaluated versus the

insecticide indoxacarb (Table 3). The tested populations

exhibited limited variability in the range of slopes; the

lowest slope was 0.61 observed in a Greek population

collected in 2016 (GR-PREV-16-5); and the highest slope

was 2.17 observed in a Greek population collected in 2014

(GR-IER-14-2). Nevertheless, the majority of the popula-

tions (21) exhibited slopes between 1.00 and 1.86, sug-

gesting homogenous responses to the oxadiazine

insecticide in Europe.

The Greek populations collected between 2012 and

2014 exhibited LC50 values ranging between 0.65 mg L-1

(GR-ARV-12-1) and 8.37 mg L-1 (GR-IER-14-1). The

resistance ratio was always found below tenfold, suggest-

ing absence of resistance to indoxacarb. In the 2015–2016

sampling period, the LC50 values ranged between

3.38 mg L-1 (GR-DRAM-16-4) and 88.0 mg L-1 (GR-

PREV-15-5). In 5 out of the 8 populations tested, the

resistance ratio was higher than tenfold, indicating a major

shift in the response to indoxacarb compared to the

2012–2014 sampling period. In the case of populations

GR-TYP-16-2 and GR-PREV-16-5, in particular, the

resistance ratio was estimated at 69- and 91-fold, respec-

tively, indicating moderate to high levels of resistance to

indoxacarb. Moderate levels of resistance were also

detected in one of the Israeli populations (ISR-15-2) that

exhibited an LC50 value of 35.3 mg L-1 to indoxacarb

(RR: 36-fold).

Minimal variability in the responses of the Italian and the

Spanish populations to indoxacarb was observed throughout

the sampling period (Table 3). For Italy, the lowest LC50 to
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Table 2 Log-dose probit-mortality data in foliar bioassays (72 h) for the insecticide chlorantraniliprole against second instar larvae of different

Tuta absoluta populations

Year Strain N LC50 FL 95% RR LC80 FL 95% Slope s.e. X2 df

GR-Lab 192 0.31 0.22–0.45 a 1.08 0.71–1.93 1.58 0.16 6.4 4

ES-Sus 330 0.2 0.14–0.23 A 0.43 0.33–0.61 2.30 0.23 35.9 25

Italy

2014 IT-PACH-14-1* 189 47.6 30.8–77.1 c 154a 243 136–611 1.19 0.17 8.0 4

IT-PACH-14-2* 126 63.7 42.1–128 cd 205 204 108–1123 1.66 0.42 2.4 1

IT-ACAT-14-1* 191 225 135–343 ef 726 762 493–1369 1.58 0.24 3.0 3

IT-GELA-14-1* 192 435 165–1193 f 1402 3022 1124–79,653 0.99 0.30 4.4 3

2015 IT-RAG-15-1 191 5.12 1.73–9.63 b 17 38.4 21.5–88.2 0.96 0.26 1.1 3

IT-RAG-15-2 192 88.9 55.3–145 cde 287 345 200–913 1.42 0.52 1.2 3

IT-MAR-15-1 191 634 323–1013 f 2044 2057 1297–3728 1.64 0.94 1.8 3

IT-MAR-15-2 191 838 457–1344 f 2704 3399 2085–6891 1.38 0.76 3.7 3

2016 IT-FOND-16-1 256 151 84.6–236 def 486 602 380–1143 1.39 0.57 4.1 5

IT-FOND-16-2 223 288 151–468 f 929 1226 742–2611 1.34 0.67 0.9 4

Greece

2012 GR-TYMP-12-2* 190 0.14 0.09–1.98 ab 0.5a 0.36 0.25–0.56 2.12 0.32 1.3 3

GR-ARV-12-1* 191 0.17 0.12–0.23 a 1 0.31 0.23–0.49 3.26 0.69 0.3 3

2014 GR-TYMP-14-1* 189 0.38 0.17–0.57 a 1 1.1 0.73–2.0 1.81 0.42 1.6 3

GR-IER-14-2* 189 1.34 0.77–2.33 b 4 7.8 4.0–27.7 1.10 0.21 4.4 3

GR-IER-14-3* 242 1.91 0.97–3.25 b 6 8.8 4.8–28.9 1.27 0.28 0.9 4

GR-IER-14-1* 159 2.45 1.24–17.0 bc 8 17.6 5.0–2476 0.98 0.31 0.1 2

2015 GR-IER-15-2 145 16.7 8.71–42.2 cd 54 78.9 33.8–858 1.24 0.40 0.1 2

GR-PEL-15-1 191 178 107–264 e 574 460 308–10,476 2.04 0.95 1.3 3

GR-IER-15-3 192 [1000 [3200

2016 GR-TYMP-16-3 224 19.9 3.9–53.5 cd 64 500 183–2759 0.60 0.28 4.7 4

GR-TYMP-16-2 223 77.3 30.3–229 de 249 4767 1072–103,120 0.47 0.18 6.0 5

GR-PREV-16-5 222 219 133–336 e 707 857 545–1590 1.42 0.53 1.1 4

GR-IER-16-6 192 315 180–508 e 1015 983 594–2629 1.70 1.00 2.8 3

GR-TYMP-16-1 224 440 188–1522 e 1418 3867 1224–152,920 0.89 0.66 1.2 4

GR-DRAM-16-4 254 [1000 [3200

Spain

2012 ES-MUR-12 240 0.14 0.09–0.26 A 1b 0.42 0.23–1.61 1.71 0.28 21.5 13

2014 ES-MUR-14-1 240 0.15 0.12–0.20 A 1 0.41 0.30–0.64 1.99 0.28 14.2 16

ES-MUR-14-2 240 1.45 1.08–2.06 C 8 4.93 3.15–11.04 1.58 0.26 13.1 16

ES-ALM-14 240 0.44 0.29–0.69 B 2 0.99 0.69–2.00 2.37 0.38 25.7 16

2015 ES-MUR-15 120 0.13 0.06–0.22 A 1 0.35 0.21–1.02 1.94 0.53 2.4 4

ES-ALM-15 120 0.14 0.07–0.23 A 1 0.34 0.21–0.85 2.08 0.52 2.3 4

2016 ES-MUR-16 120 0.12 0.02–0.22 A 1 0.55 0.30–2.63 1.25 0.41 4.4 7

Other regions

2015 ISR-15-1 192 1.74 0.36–2.76 a 6 4.48 2.85–11.21 2.05 0.42 3.4 3

ISR-15-2 190 6998 4510–9847 b 22,573 17,438 12,197–31,228 2.12 1.67 0.1 1

2016 UK-16-1 256 0.17 0.10–0.24 a 1 0.37 0.27–0.61 2.50 0.36 2.6 5

The populations have been grouped by country and sampling period (collection year). Within each sampling period, the results are in ascending

order

N number of larvae tested, FL fiducial limits, RR resistance ratio, LC50 in mg L
-1, Chi-square testing linearity of dose–mortality response: * data

from Roditakis et al. (2015), a resistance ratio (RR) calculated is based on strain GR-Lab, b resistance ratio (RR) calculated is based on strain ES-

Sus. Different letters indicate significant differences in the responses (P\ 0.05, see text for details) within a country. Capital letters indicate

comparisons with the respective reference strain
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indoxacarb was 0.87 mg L-1 reported in 2014 (IT-PACH-

14-2) and the highest was 12.8 mg L-1 reported in 2015

(IT-RAG-15-1). The resistance ratio (RR, calculated based

on GR-Lab, LC50 0.97 mg L-1), in all sampling periods,

was always found below ninefold, with just one exception

(13-fold, IT-RAG-15-1), suggesting that the populations

collected from Italy were not considered resistant to

indoxacarb. For the Spanish populations, the LC50 values

ranged between 0.22 mg L-1 (ES-MUR-14-1) and 0.80 mg

L-1 (ES-MUR-12), exhibiting typical responses of

susceptible populations to the oxadiazine insecticide in all

cases (responses compared to ES-Sus strain, LC50: 0.66 mg

L-1). The UK population was also found susceptible to

indoxacarb (LC50: 0.26 mg L-1, RR: 1).

Avermectin insecticide: emamectin benzoate

The response of 27 populations in total was evaluated vs.

the insecticide emamectin benzoate (Table 4). The tested

populations exhibited limited variability in the range of

Table 3 Log-dose probit-mortality data in foliar bioassays (72 h) for the insecticide indoxacarb against second instar larvae of different Tuta

absoluta populations

Year Strain N LC50 FL 95% RR LC80 FL 95% Slope s.e. X2 df

GR-Lab 192 0.97 0.66–1.41 a 3.65 2.36–6.84 1.46 0.11 0.6 4

ES-Sus 150 0.66 0.39–1.13 A 2.44 1.37–7.52 1.48 0.25 11.4 10

Italy

2014 IT-PACH-14-2 191 0.87 0.41–1.45 a 1a 3.33 2.02–6.23 1.45 0.25 2.0 3

IT-ACAT-14-1 172 2.63 1.32–4.22 ab 3 8.07 5.05–15.4 1.73 0.34 0.5 3

IT-PACH-14-1 158 5.21 2.80–8.35 bc 5 16.8 10.4–35.6 1.65 0.32 0.6 2

IT-GELA-14-1 191 9.21 5.01–15.43 c 9 33.6 19.3–103 1.49 0.34 0.6 3

2015 IT-RAG-15-2 192 4.89 3.12–7.20 bc 5 17.6 11.7–30.9 1.51 0.22 3.4 3

IT-RAG-15-1 192 12.8 3.09–29.9 bc 13 205 80.4–1504 0.69 0.29 3.8 3

2016 IT-FOND-16-1 256 2.52 1.53–3.91 b 3 11.6 7.35–20.94 1.26 0.15 6.1 5

IT-FOND-16-2 254 8.25 4.25–13.89 c 9 42.9 24.68–99.6 1.17 0.27 4.1 5

Greece

2012 GR-ARV-12-1 192 0.65 0.41–0.91 a 1a 1.56 0.26 1.1 3

GR-TYMP-12-2 192 3.58 1.51–6.03 b 4 11.9 7.19–21.6 1.61 0.32 3.1 3

2014 GR-TYMP-14-1 190 1.73 0.71–9.00 ab 2 26.9 6.13–2321 0.70 0.19 2.7 3

GR-IER-14-3 192 6.42 3.87–10.9 b 7 32.5 17.5–93.1 1.19 0.20 0.5 3

GR-IER-14-2 160 6.75 4.90–9.82 b 7 16.5 11.3–29.2 2.17 0.43 4.0 2

GR-IER-14-1 172 8.37 3.56–15.9 bc 9 37.3 19.0–190 1.29 0.35 0.3 3

2015 GR-IER-15-2 188 8.56 5.06–13.1 bc 9 25.1 16.0–54.7 1.80 0.42 2.1 3

GR-PEL-15-1 191 12.1 5.47–30.8 bcde 12 86.8 33.0–938 0.98 0.29 0.4 3

GR-IER-15-3 192 19.9 11.0–31.0 cde 21 66.2 42.6–118.2 1.61 0.45 4.3 3

2016 GR-DRAM-16-4 228 3.48 0.87–8.20 ab 4 9.85 4.36–52.0 1.86 0.41 12.7 5

GR-TYMP-16-1 221 6.52 0.22–24.51 abcd 7 45.2 12.9–4196 1.00 0.37 12.6 4

GR-TYMP-16-3 192 15.0 6.20–24.4 bcd 15 69.1 44.8–126 1.26 0.43 0.4 3

GR-TYMP-16-2 224 66.9 28.8–125 ef 69 614 296.6–2429 0.87 0.39 7.2 4

GR-PREV-16-5 192 88.0 17.3–204 def 91 2036 768–21,195 0.61 0.40 2.8 3

Spain

2012 ES-MUR-12 240 0.80 0.44–1.24 A 1b 2.29 1.45–6.88 1.85 0.42 19.5 16

2014 ES-MUR-14-1 270 0.22 0.11–0.39 A 0.3 1.61 0.86–4.29 0.98 0.13 26.7 19

ES-MUR-14-2 120 0.42 0.06–1.60 A 1 2.61 0.81–132.39 1.06 0.25 10.7 7

ES-ALM-14 270 0.67 0.36–1.18 A 1 5.98 2.94–20.86 0.89 0.16 13.8 19

2015 ES-MUR-15 120 0.38 0.12–1.77 A 1 2.24 0.69–80.27 1.11 0.2 13.9 7

Other regions

2015 ISR-15-1 192 0.77 0.34–1.33 a 1a 3.94 2.33–8.07 1.19 0.15 2.8 3

ISR-15-2 192 35.3 15.8–61.7 b 36 172 99.2–367 1.22 0.44 1.9 3

2016 UK-16-1 192 0.26 0.16–0.37 a 0.3 0.75 0.51–1.26 1.82 0.19 1.6 3

See footnote of Table 2 for details
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slopes; the lowest slope (0.68) was observed in a Spanish

population collected in 2015 (ES-MUR-15); and the

highest slope (2.42) was observed in the UK population

collected in 2016 (UK-16-1). The majority of the popula-

tions (23) exhibited slopes between 1.00 and 2.00, sug-

gesting homogenous responses to the avermectin

insecticide. The differentiation in the responses for popu-

lations collected in Greece and Italy was generally low

throughout the sampling period. The LC50 ranged between

0.07 mg L-1 (GR-IER-15-3) and 1.74 mg L-1 (IT-GELA-

14-1). The resistance factors ranged between susceptibility

levels (twofold and fourfold for Greece and Italy,

respectively) and low resistance levels (15- to 16-fold) with

one exception (35-fold, IT-GELA-14-1). During the sam-

pling period, six populations in total were detected with

low to moderate resistance levels. High susceptibility

levels were observed for the Spanish populations. The LC50

ranged between 0.01 mg L-1 (ES-MUR-15) and 0.04 mg

L-1 (ES-ALM-14), and resistance factor ranged between

onefold to threefold, respectively. The populations from

Israel exhibited LC50 values below 0.52 mg L-1 (tenfold

resistance ratio) and the population from UK exhibited a

response similar to the reference strain (LC50: 0.05 mg

L-1).

Table 4 Log-dose probit-mortality data in foliar bioassays (72 h) for the insecticide emamectin benzoate against second instar larvae of

different Tuta absoluta populations

Year Strain N LC50 FL 95% RR LC80 FL 95% Slope s.e. X2 df

GR-Lab 192 0.05 0.036–0.07 a 0.18 0.12–0.31 1.58 0.28 5.5 4

ES-Sus 150 0.01 0.010–0.016 A 0.02 0.019–0.035 3.16 0.60 9.8 10

Italy

2014 IT-ACAT-14-1 179 0.22 0.09–0.38 b 4a 0.90 0.53–1.79 1.38 0.25 2.4 3

IT-PACH-14-2 191 0.27 0.15–0.4 b 5 0.67 0.45–1.14 2.15 0.42 0.6 3

IT-PACH-14-1 192 0.85 0.42–1.37 c 17 2.95 1.82–5.7 1.55 0.28 1.1 3

IT-GELA-14-1 190 1.74 0.89–3.22 c 35 10.4 5.2–36.56 1.08 0.21 0.4 3

2015 IT-RAG-15-1 191 0.25 0.12–0.39 b 5 0.91 0.58–1.68 1.49 0.16 5.2 3

IT-RAG-15-2 191 0.75 0.36–1.25 bc 15 2.70 1.64–5.31 1.52 0.17 3.3 3

2016 IT-FOND-16-1 224 0.81 0.44–1.27 c 16 3.36 2.16–5.99 1.36 0.14 1.9 4

IT-FOND-16-2 223 0.82 0.47–1.25 c 16 2.63 1.73–4.75 1.67 0.15 2.2 4

Greece

2014 GR-TYMP-14-1 191 0.11 0.07–0.16 ab 2a 0.3 0.23–0.53 1.89 0.31 2.0 3

GR-IER-14-3 191 0.16 0.09–0.26 b 3 0.8 0.47–1.54 1.27 0.20 1.8 3

GR-IER-14-1 192 0.31 0.11–0.53 bc 6 1.2 0.73–2.75 1.40 0.32 5.4 3

GR-IER-14-2 192 0.38 0.16–0.63 bc 8 1.3 0.79–2.35 1.59 0.31 4.2 3

2015 GR-IER-15-3 192 0.07 0.008–0.17 ab 1 0.76 0.36–1.96 0.81 0.13 3.3 3

GR-IER-15-2 172 0.56 0.30–0.89 c 11 1.53 0.97–2.78 1.94 0.19 1.8 3

GR-PEL-15-1 192 0.57 0.27–0.94 c 11 2.03 1.26–3.79 1.54 0.16 4.9 3

2016 GR-TYMP-16-2 191 0.17 0.10–0.27 b 3 0.72 0.46–1.38 1.39 0.18 3.1 3

GR-DRAM-16-4 192 0.17 0.10–0.24 b 3 0.46 0.32–0.76 1.92 0.23 4.4 3

GR-TYMP-16-1 160 0.21 0.09–0.37 bc 4 1.23 0.70–3.44 1.11 0.16 1.9 2

GR-TYMP-16-3 191 0.25 0.16–0.37 bc 5 0.82 0.55–1.43 1.67 0.18 3.5 3

GR-PREV-16-5 217 0.60 0.36–0.88 c 12 1.67 1.14–2.77 1.88 0.16 4.1 4

GR-IER-16-6 192 0.80 0.48–1.35 c 16 3.33 1.88–9.21 1.36 0.14 0.9 3

Spain

2014 ES-MUR-14-2 120 0.02 0.002–0.064 A 2b 0.11 0.04–1.16 1.16 0.29 8.6 7

ES-ALM-14 120 0.04 0.018–0.107 B 3 0.23 0.09–9.53 1.12 0.38 2.3 7

2015 ES-MUR-15 150 0.01 0.0001–0.0551 A 1 0.19 0.04–11.90 0.68 0.14 23.0 10

Other regions

2015 ISR-15-1 192 0.17 0.10–0.25 b 3a 0.56 0.37–0.98 1.61 0.19 4.6 3

ISR-15-2 191 0.51 0.30–0.76 c 10 1.36 0.92–2.24 1.99 0.17 1.7 3

2016 UK-16-1 192 0.05 0.03–0.07 a 1 0.11 0.08–0.18 2.42 0.55 2.9 3

See footnote of Table 2 for details
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Spinosyn insecticide: spinosad

The response of 27 populations in total was tested against the

insecticide spinosad (Table 5). The tested populations

exhibited high variability in the range of slopes. The lowest

slope (0.62) was observed in the UK population collected in

2016 (UK-16-1), and the highest slope (4.46) was observed

in Greece in a strain collected in 2016 (GR-DRAM-16-4).

The majority of the populations (16) exhibited very steep

slopes, higher than 2. The responses of the Italian, the Greek

and the Israeli populations were similar. The LC50 ranged

between 0.09 mg L-1 (GR-IER-14-3) and 0.59 mg L-1

(GR-IER-15-2). The resistance factor ranged between 0.3-

fold and twofold, indicating high susceptibility levels for all

regions. High susceptibility was also observed for the

Spanish populations. The LC50 ranged between 0.01 mg

L-1 (ES- ALM-14) and 0.22 mg L-1 (ES-MUR-16), and the

estimated RR indicated the absence of spinosad resistance in

Spain. The estimated LC50 for the UK population (UK-16-1)

was 9.02 mg L-1 resulting in a 33-fold resistance ratio

(calculated based on GR-Lab strain, LC50 0.05 mg L-1), the

highest detected in this data set. This resistance factor value

indicates moderate resistance level to spinosad for the

population from North Yorkshire.

Table 5 Log-dose probit-mortality data in foliar bioassays (72 h) for the insecticide spinosad against second instar larvae of different Tuta

absoluta populations

Year Strain N LC50 FL 95% RR LC80 FL 95% Slope s.e. X2 df

GR-Lab 192 0.27 0.15–0.40 a 0.76 0.51–1.29 1.86 0.19 7.0 3

ES-Sus 180 0.29 0.14–0.50 A 0.6 0.39–1.32 2.92 0.53 23.0 13

Italy

2014 IT-PACH-14-2 188 0.11 0.06–0.16 a 0.4a 0.3 0.2–0.5 1.90 0.33 0.6 3

IT-PACH-14-1 190 0.23 0.12–0.34 a 1 0.6 0.39–0.95 2.18 0.46 1.7 3

IT-ACAT-14-1 192 0.31 0.21–0.41 a 1 0.5 0.4–0.82 3.69 0.84 1.5 3

IT-GELA-14-1 192 0.45 0.24–0.61 a 2 0.8 0.61–1.35 3.21 0.88 2.6 3

2015 IT-RAG-15-1 159 0.13 0.05–0.24 a 0 0.5 0.28–0.96 1.48 0.21 3.4 2

IT-RAG-15-2 191 0.41 0.26–0.58 a 2 0.93 0.66–1.51 2.38 0.21 2.2 3

2016 IT-FOND-16-1 192 0.19 0.14–0.26 a 1 0.43 0.31–0.67 2.42 0.28 1.4 3

IT-FOND-16-2 191 0.22 0.15–0.28 a 1 0.35 0.27–0.54 4.18 0.65 0.3 3

Greece

2014 GR-IER-14-3 159 0.09 0.04–0.15 a 0.3a 0.3 0.19–0.66 1.55 0.32 2.0 2

GR-IER-14-1 192 0.12 0.079–0.17 a 0.4 0.2 0.16–0.36 3.41 0.86 0.1 3

GR-IER-14-2 189 0.17 0.046–0.3 a 1 0.5 0.3–0.91 1.85 0.51 3.0 3

GR-TYMP-14-1 189 0.23 0.12–0.35 a 1 0.7 0.48–1.33 1.64 0.29 0.5 3

2015 GR-PEL-15-1 192 0.28 0.18–0.40 a 1 0.79 0.54–1.35 1.89 0.19 1.5 2

GR-IER-15-3 116 0.32 0.21–0.43 a 1 0.55 0.41–0.9 3.68 0.42 0.0 1

GR-IER-15-2 190 0.59 0.37–0.82 a 2 1.21 0.87–1.89 2.72 0.19 5.9 3

2016 GR-TYMP-16-3 190 0.16 0.035–0.23 a 1 0.33 0.22–0.64 2.62 0.54 2.7 3

GR-TYMP-16-2 191 0.18 0.12–0.24 a 1 0.30 0.23–0.46 4.01 0.66 3.0 3

GR-DRAM-16-4 191 0.21 0.08–0.28 a 1 0.33 0.25–0.64 4.46 0.93 3.7 3

GR-IER-16-6 191 0.26 0.17–0.36 a 1 0.49 0.36–0.77 3.12 0.36 0.1 3

GR-TYMP-16-1 192 0.29 0.18–0.40 a 1 0.56 0.41–0.89 3.04 0.33 2.5 3

Spain

2012 ES-MUR-12 120 0.16 0.09-0.33 A 1b 0.59 0.30–4.43 1.49 0.42 5.2 7

2014 ES-MUR-14-2 270 0.04 0.02–0.07 B 0.1 0.21 0.12–0.55 1.15 0.19 19.6 16

ES-ALM-14 120 0.01 0.003–0.03 B 0.03 0.04 0.02–0.34 1.75 0.42 4.3 4

2016 ES-MUR-16 240 0.22 0.14–0.48 A 1 1.26 0.55–10.34 1.12 0.27 15.3 16

Other regions

2015 ISR-15-1 175 0.17 0.13–0.23 a 1a 0.39 0.28–0.62 2.38 0.29 2.3 4

ISR-15-2 185 0.20 0.12–0.28 a 1 0.46 0.32–0.75 2.29 0.27 4.2 3

2016 UK-16-1 224 9.02 4.27–29.9 b 33 206 52–3739 0.62 0.11 0.4 5

See footnote of Table 2 for details
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Likelihood of chemical control failure analysis

Studies estimating the likelihood of chemical control fail-

ure were performed. The RLR for insecticide chlo-

rantraniliprole (42 mg L-1) was found significantly lower

than the LC80 in eighteen cases. Likelihood of control

failure was reported in highly resistant populations col-

lected after 2014 from Italy, Greece and Israel. In general,

a resistance ratio (RR) over 60-fold was linked to signifi-

cant likelihood of chemical control failure. Almost all of

these eighteen populations were collected from fields with

reported control failures, indicating that the metrics used in

this study for predicting the likelihood of control failure

were valid. For insecticide indoxacarb, significant potential

of control failure was identified in four cases from Greece

(GR-ER-15-3, GR-TYMP-16-3, GR-TYMP-16-2 and GR-

PREV-16-5), one from Israel (ISR-15-2) and one from

Italy (IT-RAG-15-1). These six cases were associated with

indoxacarb resistance levels higher than 13-fold. The

control failure likelihood for indoxacarb was found in

combination with control failure likelihood for chlo-

rantraniliprole (with one exception), suggesting excep-

tional cases of heavily treated fields. In accordance with the

above findings, lack of performance of indoxacarb from

commercial applications has not been reported to date.

Finally, the likelihood of chemical control failure was

estimated for insecticides emamectin benzoate and spino-

sad. Despite the detection of moderately resistance popu-

lations, potential control failure cases were not identified

for these insecticides.

Discussion

Determination of baseline toxicity to insecticides and

subsequent monitoring of the susceptibility levels is a key

component of current insecticide resistance management

strategies for any major pest (Zhao et al. 2006; Ishtiaq et al.

2011; Ellsworth et al. 2013; Gao et al. 2013). This

approach is essential, particularly for novel insecticides,

since alternative resistance monitoring tools, such as

molecular markers or biochemical diagnostic tests, are

usually not available. Susceptibility monitoring allows the

early detection of potential cases of insecticide resistance

and provides the opportunity to implement evidence-based

strategies to inhibit or delay resistance development (Slater

et al. 2017; Zimmer et al. 2017).

Tuta absoluta is a good example on how susceptibility

monitoring can provide the basis for proactive resistance

management. The tomato leaf miner exhibited its capacity

to develop resistance to wide range of pesticides in early

2000, several years prior global invasion was initiated

(Siqueira et al. 2000a, b; Lietti et al. 2005). Having this

knowledge, baseline toxicity to major chemical classes,

using European T. absoluta populations was established

immediately after the invasion of the Old World (Roditakis

et al. 2013a, b). Three years later, these baselines were used

to demonstrate the first case of resistance development to

diamide insecticides, a major component of T. absoluta

management schemes (Roditakis et al. 2015). Consistent

susceptibility monitoring for T. absoluta was also imple-

mented in other regions of the world, such as Brazil, pro-

viding the respective benefits to the local farmers (Campos

et al. 2014a; Silva et al. 2015, 2016a, b). Hereby, our group

pursued and expanded this essential susceptibility moni-

toring processes, and the output of this work is presented in

this study.

The insecticide emamectin benzoate is an extremely

potent pest control tool for T. absoluta since no cases of

control failure were detected throughout the monitoring

period for all regions tested and resistance levels where

generally low. However, in year 2016, in three cases (Italy

and Greece) resistance ratio reached 16-fold, suggesting

detection of low resistant levels and indicating a potential

shift in the responses of T. absoluta populations to ema-

mectin benzoate. To date, reports for resistance to aver-

mectins for T. absoluta are practically absent. In 2000,

Siqueira et al. (2000b) reported up to 9.4-fold resistance

levels to abamectin in populations from Brazil; however,

no other cases have been detected since. In these strains,

efficacy of abamectin was synergized by piperonyl butox-

ide and triphenyl phosphate suggesting potential involve-

ment of detoxification enzymes in abamectin resistance

(Siqueira et al. 2001). Enhanced metabolic detoxification

has been reported in abamectin-resistant pests, as well as

several mutations in GluCls, the target site of avermectins

(Kane et al. 2000; Rugg et al. 2005; Kwon et al. 2010; Pu

et al. 2010; Dermauw et al. 2012; Liu et al. 2014; Riga

et al. 2014; Wang et al. 2016a).

Spinosad exhibited minimal divergence from the pre-

viously defined baseline toxicity (Roditakis et al. 2013a)

throughout the sampling period and for all regions in the

Mediterranean. Our findings suggest that spinosad remains

an extremely potent insecticide for T. absoluta control. A

single population collected from UK exhibited a 33-fold

resistance to spinosyns. Although control failure likelihood

was not significant, the farmer reported problematic per-

formance of spinosad (R. Jacobson and E. Roditakis, per-

sonal.com.). High levels (478-fold) of field evolved

resistance to this class of insecticide have been previously

reported in UK (AHDB 2015). Resistance levels identified

in this study are substantially lower that those estimated in

the 2015 report. Another case of spinosad control failure in

Europe was recently reported in Portugal (Berger et al.

2016). High levels of spinosad resistance for T. absoluta

have also been reported in populations from S. America
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(Reyes et al. 2012; Campos et al. 2014b). Spinosad resis-

tance in T. absoluta has been associated with metabolic

resistance (increased cytochrome P450 activity) target site

mutations (G275E mutation in the nicotinic acetylcholine

receptor a6 subunit) and an exon skipping event of the

nAChR a6 subunit (Reyes et al. 2012; Berger et al. 2016;

Silva et al. 2016c). The mechanisms involved in the spi-

nosad-resistant UK population are currently unknown.

Indoxacarb is one of the basic pest management tools for

T. absoluta consistently used in early/mid period of the

cropping season. Resistance to indoxacarb has not been

documented to date; however, the natural variability

detected in the early baseline studies was relatively high

(up to 12-fold) when compared to the baselines for other

chemicals (Roditakis et al. 2013a, b). This variability

indicated diverse responses from the European T. absoluta

populations to this class of insecticides, which was not

observed in a respective study conducted in Brazil (Silva

et al. 2016b). In this study, indoxacarb exhibited high

efficacy levels in all cases, with the exception of one

population from Italy and four populations from Greece

collected in 2015–2016 sampling period where resistance

higher than 13-fold was detected with significant control

failure likelihood. Indoxacarb resistance mechanism was

recently investigated in laboratory selected strains (Rodi-

takis et al. 2017a). It was demonstrated that the presence of

F1845Y and V1848I mutations on segment 6 of Domain IV

of sodium channel was strongly associated with the

indoxacarb-resistant phenotype, while only partial

involvement of detoxification enzymes could be detected.

These mutations have been previously reported in indox-

acarb-resistant P. xylostella (Wang et al. 2016b). Our

finding indicated for the first time the presence of indox-

acarb-resistant populations in Europe. Just four cases were

detected; however, it is of critical importance to utilize

these alarming indications and act proactively in order to

maintain the high efficacy of the product.

Diamides are extremely potent chemical insecticides for

lepidopteran control. They were recently introduced to the

market with great success and currently represent approx.

8% of the insecticide market share (Jeanguenat 2013;

Sparks and Nauen 2015). Due to their IPM compatible

profile, diamides are an extremely versatile tool in T.

absoluta control. However, due to their extensive use

(often off-label), high resistance levels were reported in

populations from Italy (Roditakis et al. 2015), and soon

after, diamide resistance was reported in Brazil (Silva et al.

2016a). The results of our study indicated that diamide

resistance remains well established in Italy and now

expanded in Greece and Israel. The mechanisms involved

in diamide resistance in T. absoluta were recently inves-

tigated by Roditakis et al. (2017b) in a range of strains

from around the world. The presence of mutations in the

transmembrane domain of the ryanodine receptor (RyR)

conferring resistance to diamide insecticides was detected.

Two of the mutations were novel (G4903V and I4746T)

and two corresponded to previously described mutations in

P. xylostella (G4946E and I4790M) (Troczka et al. 2012;

Gong et al. 2014; Guo et al. 2014; Steinbach et al. 2015).

Detoxification enzymes may play a role in diamide resis-

tance; however, strong evidence with regard to the role of

metabolic mechanisms in this respect is still lacking

(Campos et al. 2015; Nauen and Steinbach 2016; Roditakis

et al. 2017b). Although the diamide resistance problem is

increasing, it is important to note that population sampling

is commonly biased, as it is occasionally conducted in

crops where pest control performance was problematic.

Therefore, based on our field experience, susceptible pop-

ulations still exist in Italy and Greece that are successfully

controlled by diamides. However, in the case that diamide

resistance is confirmed, rotation of MoAs as an IRM

strategy may not have a notable, immediate effect on dia-

mide resistance levels. The reason is that stability of dia-

mide resistance to lepidopteran pest is extensive (Steinbach

et al. 2015; Roditakis et al. 2016) while reversal of the

phenomenon may be an extremely complex and long pro-

cess since fitness cost to diamide resistance is limited or

absent in T. absoluta (Elias and Stain 2016).

Despite the wide spread of diamide resistance in Europe

and S. America, there are still regions, where diamide

resistance has not been documented, as identified by this

study. Spain, for example, is a region with greenhouse

tomato production, pest management issues and climatic

conditions comparable to the other Mediterranean coun-

tries. Nonetheless, Spanish populations were found sus-

ceptible to diamides. A proactive IRM strategy was

designed very early after T. absoluta introduction in Spain.

Industry, researchers and officials, such as Plant Protection

Services, were collaborating as well as IRAC Spain to

develop an IRM strategy based on rotation of MoAs but also

promoting the adoption of non-chemical control methods,

such as traps, insect-proof netting and biological control

(Bielza et al. 2016) as part of a truly integrated T. absoluta

management strategy. A huge effort was made by IRAC

Spain to communicate this IRM strategy, through meetings

and conferences aimed at growers and advisors, as well as

through massive divulgation to cooperatives, distribution,

officials, etc. Within this IPM approach, Spanish growers

rely extensively on the predatory mirid bug Nesidiocoris

tenuis (Reuter), which is released even in nurseries (pre-

planting) to allow early establishment and successful con-

trol of the tomato leaf miner (Calvo et al. 2012).

It is evident that, by following the basic IPM approaches

and by implementing rational IRM tactics, the extreme

selection pressure imposed by the frequent insecticide

application is suppressed; thus, the driving force of
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insecticide resistance development diminishes. Conse-

quently, the efficacy of the plant protection products can be

maintained for prolonged periods as it is profoundly

demonstrated in the Mediterranean by the case of Spain. It

is important to note that pyrethroids should be avoided for

control of T. absoluta. It has been demonstrated that pyr-

ethroids are ineffective control agents for this particular

pest (Roditakis et al. 2013a; Silva et al. 2015), and reliance

on this chemical group may contribute to pest control

failures (Silva et al. 2011; Gontijo et al. 2013). It is also

noted that within an IRM MoA rotation scheme, alternation

of indoxacarb with metaflumizone (an insecticide that

belongs to the closely related MoA Group 22B) is not

recommended due to indications of cross-resistance in P.

xylostella (Wang et al. 2016b) and T. absoluta (Roditakis,

unpublished data). Finally, it is essential to use efficient

registered products, at the recommended rates and not

exceeding the maximum number of applications as indi-

cated on the product’s labels. Sustainable tomato produc-

tion in Europe is possible in spite of the threat of tomato

leaf miner; however, the tomato production industry will

have to comply with a major shift toward IPM in current

pest management tactics.
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Zappalà L, Biondi A, Alma A, Al-Jboory IJ, Arnò J, Bayram A,
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